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ABSTRACT
With robots appearing frequently within our society, the cases will be higher where people with little or no practical
experience in robotics would have to supervise robots. Future interfaces should make Human Robot Interactions
(HRI) intuitive for such less-experienced users. A key requirement to have an intuitive interface is to improve the
level of HRI performance. In this study we try to improve the HRI performance by developing a system namely,
SHRIMP (Spatial Human Robot Interaction Marker Platform) based on Augmented Reality (AR) technology. We
present SHRIMP as a new type of middleware for HRI, that can mediate high-level user intentions with robot-
related action tasks. SHRIMP enables users to embed user intentions in the form of AR diagrams inside the robot’s
environment (as seen by the robot’s camera view). These AR diagrams translate into action tasks for robots to
follow in that environment. Furthermore, we report on the HRI performance induced by our SHRIMP framework
when compared to an alternative more common robot control interface, a joystick controller.
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1 INTRODUCTION
In future, robots will play a major role in our personal
spaces, while making our everyday activities more ef-
ficient. However it is not guaranteed that people who
control robots in personal spaces such as homes, of-
fices, schools, and hospitals will always have a special-
ized experience in controlling robots. In such cases, a
successful HRI depends on a powerful interface that can
bridge those experience gaps and make the collabora-
tion between man and machine intuitive and seamless.
A key ingredient in making an intuitive interface is to
have a higher level HRI performance. There are sev-
eral options available for this purpose including visual,
tactile, verbal, or multimodal communication mecha-
nisms. In this paper, we explore the levels of HRI im-
provement realizable through one of the most powerful
and most advanced visual communication mechanisms,
Augmented Reality (AR).

AR refers to the representation of virtual graphics ob-
jects on top of a real-world scene [Payton et al., 2001].
In the context of our study we view AR as a new form
of middleware to carry out HRI activities, a middleware
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that could work as a generalized framework across mul-
tiple robot platforms and hardware devices rather than
a stand-alone application specific interface. In its core,
AR uses diagrams for referencing physical space, in-
strumenting that space with markers, instructions and
messages. A middleware assisted by AR could express
these diagrams as robot related action tasks, which user
intends to carry out in a physical space. SHRIMP is a
proof of concept framework that we developed to real-
ize the existence of such a middleware.

SHRIMP enables users to interact with any robot
through the placement of AR diagrams within the
environment. These AR diagrams (or AR objects) can
be tagged with instructions, such as ‘follow’, ‘wait’,
‘hold’ and higher level functions or behaviors such as
‘vacuum the floor’, ‘clean the table’ are also possible.
AR object placement is achieved by directly placing
them in the robot’s environment through a real-time
video centric interface. We believe that this gives room
for the less-experienced human operator to improve
his spatial awareness and manipulate robots intuitively.
For example consider a home environment. With
SHRIMP in place, a house wife could visually program
or leave messages for her cleaner robot by placing
and tagging these AR objects in the environment.
Another scenario would be a hospital environment,
where SHRIMP platform could be used by a nurse to
place routing information for care robots to follow for
their rounds. In later sections we further discuss the
way our middleware operates and its utilization of HRI
performance.



The remainder of this paper is structured in the fol-
lowing manner. Section 2 highlights the current state-
of-the-art diagrammatic mechanisms used in robotics.
The details of our solution are described in Section 3
whereas Section 4, 5, and 6 report on our applications,
experiments and their results respectively.

2 RECENT SOLUTIONS
Although we describe our proposed middleware as a di-
agrammatic mechansim rendered through AR, there are
other methods that use diagrams as the primary mode
of communication for HRI. In general, we can classify
them into four distinct categories namely, digital codes,
fiducial markers, object markers & marker-less meth-
ods. Mentioned below are some of the recent applica-
tions from each category.

Digital codes have two different representations, bar-
codes & QR (Quick Response) codes. The work de-
scribed in [Han et al., 2012] presents a method for in-
teracting with robots through bar-codes. According to
them, robots can track object poses by having a bar-
code on the observed object. They further suggest the
suitability of such a mechanism for assistive robots in
super-markets to grab, hold and lift commodities tagged
with bar-codes. On the other hand, a recent study by
[Martinez et al., 2013] describes a simulation and a test
bed application for mobile robots. Their test bed appli-
cation implements a strategy for tracking the position
and the heading angle of mobile vehicular robots via a
special bar-code ID.

The second type of digital codes are the QR codes.
They are considered as a faster identification method
for object recognition, especially when robots are
used in household environments [Li et al., 2012].
Further demonstrations by [Li et al., 2012] sug-
gest that robots can move or grasp objects, with
those objects marked with QR codes. The work of
[Garcia-Arroyo et al., 2012] further supports this claim
with their shopping assistance robot system. The shop
assistant robot cooperates with the human user to
maintain his shopping list, select items and alert for
any missing items from the list through QR codes.

In addition to digital codes, fiducial markers act as
an alternative diagrammatic mechanism, especially in
robot path-planning activities. An example application
can be seen in [Fang et al., 2012], where they used fidu-
cial markers to plan optimal trajectories of a stationary
robotic arm. Here the communication between the user
and the robotic arm is performed with a special hand-
held device which is attached with a fiducial marker
cube. A study presented by [Hu et al., 2013] delivers
a similar idea of motion planning where they place a
fiducial marker to create a ‘virtual robot’ which acts on
behalf of a real robot. They further suggest that human

operators can control the virtual robot to indirectly ma-
nipulate the remote real robot. A similar notion can be
seen in [Lee and Lucas, 2012], where they use fiducial
marker patterns for planning obstacle and collision free
paths for a group of heterogeneous robots.

Object markers work by tracking the motion of natu-
ral objects within the environment. Thereby it creates a
less artificial form of interaction when compared to dig-
ital codes and fiducial markers, especially where object-
tracking robots and human-following robots are used.
Recent works described in [Jean and Lian, 2012] and
[Karkoub et al., 2012] indicate the usefulness of object
markers for such applications.

The above body of work justifies the claim that bar-
codes, QR codes, fiducial markers, and objects markers
are well established diagrammatic mechanisms in HRI.
Their application is substantially verified in a variety of
HRI tasks and thus research with these mechanisms has
grown into a well matured state. Even though this is the
case, they pose the problem of specifically instrument-
ing the environment with those objects, before having
any interaction with a robot.

On the other hand, marker-less methods does not
require the environment to be instrumented with
special markers and can be used in a readily available
environment. Studies presented in [Chen et al., 2008,
Leutert et al., 2013, Abbas et al., 2012] describe the
use of marker-less methods such as marker-less AR
for interacting with robots. However, their outcomes
appear questionable when robots are operated in more
practical and everyday environments, as in homes and
office spaces. Furthermore, it is an open question to see
how well marker-less AR can fill in the experience gaps
for non-robotic users. Following section highlights
our solution as we explore marker-less AR’s potential
as a diagrammatic mechanism in improving HRI
performance.

3 PROPOSED SOLUTION
In making a solution, our first step was to focus on
structuring our framework with a stable marker-less AR
approach. The current state-of-the-art in marker-less
AR technology is arguably the Parallel Tracking and
Multiple Mapping (PTAMM) [Castle et al., 2008] plat-
form. PTAMM identifies unique scale invariant fea-
tures to attach AR objects (i.e. virtual graphics ele-
ments) and locally tracks them through a scene.

However, PTAMM by default generates multiple local
maps and so it could not track a single AR object in
a persistent manner. For example, imagine you create
an AR object and move the camera towards it. Once
you move past the AR object, turn the camera back
in an angle of 180 degrees. At this point the cam-
era will be looking at the path it has travelled, and we



would expect the AR object to be seen persistently an-
chored at its original position. We ran several trials with
the default PTAMM implementation and found it diffi-
cult to achieve this behavior. Since we intend to ap-
ply PTAMM to guide robots, tracking robustness under
such wide camera angles is considered one of our major
design decisions.

We have addressed this shortcoming by introducing a
linear transformation algorithm into PTAMM. The al-
gorithm combines all local maps generated by PTAMM
into a single global map with linear equations, car-
ried out at frame-rate. At the beginning of the algo-
rithm, it takes the initial camera position as the global
map origin. All the subsequent local maps are ex-
pressed with regard to the global map origin (via linear
equations), hence giving a global camera pose through-
out the course of the camera’s motion. Finally the
rotation & the translation matrices embedded in the
global camera pose are fed into the graphics rendering
pipeline. More details of our algorithm can be found in
[Lakshantha and Egerton, 2014].

Our linear transformation algorithm enables the
marker-less AR object to be globally tracked in a
persistent manner, in the same way a physical object
would be. This helps our proposed middleware frame-
work (i.e. SHRIMP) to maintain and track AR objects
when they fall out of camera view, or more importantly,
approached from a different location.

The series of pictures in Figure 1 demonstrates the per-
sistence of our marker-less AR framework. The first
three images show local vantage points and placement
of the AR object in the environment. Then the camera is

Figure 1: Tracking persistence of SHRIMP under wide
camera angles
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Figure 2: SHRIMP communication architecture

turned away from the AR scene, returns from a different
vantage point and the AR object is observed, demon-
strating persistence in the same way the solid physical
objects are within the scene.

We have implemented our framework under Ubuntu
12.04 and the Robot Operating System (ROS) frame-
work. The framework currently runs as a client server
model, where the robots act as clients to the SHRIMP
server hosted on an i7 desktop PC, as illustrated in Fig-
ure 2. This enables us to ‘plugin’ and experiment with
different robot platforms with minimal changes to the
code base.

As shown in Figure 2 the human operator performs the
placement of AR objects through the desktop PC which
in turn hosts the SHRIMP service. A standard USB
web-cam which outlooks the target environment, pro-
vides the user with the view of the robot’s view frus-
trum. The placement of the AR objects is carried out
on top of this live video feed, in a real-time manner.
After positioning an AR object within the robot’s vicin-
ity, SHRIMP broadcasts the amount of distance and the
rotation required, in order to reach the target location -
in this case the AR object’s location. The robot keeps
on listening to this broadcast and captures this data, fol-
lowed by executing the required motion. The conversa-
tion between the robot and the SHRIMP server contin-
ues until it reaches the target location.

4 APPLYING OUR SOLUTION TO HRI
We tested SHRIMP with two different robot develop-
ment platforms, firstly on a Parallax R⃝ Eddie robot plat-
form and then on a LEGO R⃝ Mindstorm NXT. In the
next two sections we demonstrate two HRI scenarios
where we discuss our framework’s functionality with
these robots.

4.1 Navigation Scenario
For the first case, we chose HRI navigation task as it
is the most fundamental and widely-used functionality
in mobile robotics. SHRIMP permits the human oper-
ator to lay down a series of virtual AR objects on the
scene, whereby each object acts as a navigation point
for the robot. These AR objects can be organized into a
set of way-points which ultimately constitute a virtual
navigation path on top of the robot’s field-of-view. The
scenario highlighted here is illustrated in Figure 3.

In the demonstration shown in Figure 3a, the naviga-
tion path is trailed by three AR objects. The right-hand
side (area under black background) provides a 3D map
view of the environment to enhance depth perception.
Once the AR objects are laid, the robot is ready to move
along the path. The navigation is performed in the or-
der AR objects are placed in the scene. Accordingly,
robot starts moving on to the first AR object in Figure



(a) Laying a series of way-points with marker-less AR

(b) First point (c) Second point (d) Third point

Figure 3: Creating a virtual navigation path by marking multiple locations in space with multiple AR objects.

Figure 4: Multiple HRI tasks are represented with multi-colored AR objects

3b, then moves on to the second AR object in Figure 3c.
The robot terminates its navigation after moving on to
the last AR object in Figure 3d. We tested this scenario
with a LEGO R⃝ Mindstorm NXT robot. The accompa-
nying video file1 further explains this demonstration.

4.2 Hold & Grip Scenario
In our second scenario we investigate the SHRIMP’s
operation against a hold & grip task. Here, we navigate

1 http://youtu.be/lIlpv3QPH5g

the robot towards a location in space and then perform
a hold & grip action. Multiple AR objects with differ-
ent colors are employed for this purpose, in a manner
where each color maps into a unique HRI task. Let’s
consider the illustration in Figure 4. According to the
illustration a blue-colored AR object represents a navi-
gation task whereas the pink AR object signifies a hold
& grip action. In this case the blue AR object (the fore-
most one) and the pink AR object shares the same point
in space, which carries the idea that the robot should
perform a hold & grip task at the location of the first



Subject
ID

School / De-
partment

Gender Age group
(years)

Level of expe-
rience using
computers
(years)

Level of
experience
using com-
puter games
(years)

1 IT Male 26-30 10+ 10+
2 IT Female 26-30 8-10 8-10
3 IT Female 26-30 8-10 8-10
4 IT Male 21-25 8-10 8-10
5 IT Male 35+ 10+ less than 2
6 Engineering Male 21-25 5-7 5-7
7 IT Female 15-20 less than 2 less than 2
8 Engineering Female 21-25 10+ 2-4
9 Arts Female 21-25 8-10 8-10
10 Engineering Female 21-25 10+ 2-4
11 IT Male 21-25 10+ 8-10
12 Other Female 26-30 8-10 2-4
13 IT Male 26-30 10+ 2-4
14 IT Male 31-35 5-7 10+
15 Other Male 35+ 10+ 8-10
16 IT Male 26-30 10+ 10+
17 Other Female 26-30 8-10 5-7
18 IT Male 35+ 10+ less than 2
19 IT Male 35+ 10+ less than 2
20 IT Female 26-30 8-10 less than 2

Table 1: Participant profiles

AR object. The online video footage2 provides a more
comprehensive demonstration of this scenario.

5 A CASE STUDY: NAVIGATION
To investigate the SHRIMP’s HRI performance for
less-experienced users (i.e. average users) we carried
out a case study. In this case study our robot client
is a Parallex R⃝ wheeled robot. The Parallex R⃝ is a
Microsoft R⃝ robot reference design with its driver
layer adapted to the ROS environment. The case study
addressed the following hypothesis,

“Does the SHRIMP framework improve the HRI
performance for the average person ?”

To answer this hypothesis we set up a comparative nav-
igation task experiment. A total of twenty participants
were employed for this task and we asked each partici-
pant to remotely operate the robot and navigate it over
a predefined path. Details of participant profiles such
as age, gender, and experience levels are summarized
in Table 1.
The participants only had access to the robot camera
view and were also asked to observe the environmental
scene through the robot’s camera view while perform-
ing the task. The participants completed the task twice,

2 http://youtu.be/ye8wKdJX7IY

once, remotely operating the robot using a PS3 joystick
controller and again using our SHRIMP AR framework.
In order to minimize bias, we shuffled the order of ex-
ecution between the two conditions PS3 and SHRIMP
for each participant. For instance, if one participant had
PS3 as the first trial & SHRIMP as the second, then the
next participant had SHRIMP as the first trial & and
PS3 as the second. Here we used a PS3 joystick con-
troller as a benchmark since joystick controllers are one
of the most widely used HRI methods.

To test our hypothesis we measured task completion
times and measured operator performance-levels (i.e.
task load level) via a post observational questionnaire
where we asked each participant to recall a set of spe-
cial elements within the environment. These special el-

Figure 5: Experimental set up for our case study.



ements were symbolized by a set of fiducial markers
which in turn were positioned randomly across the en-
vironment. Users managed the robot only through the
camera view whereby a solid screen in the middle fur-
ther prevented users from directly viewing the environ-
ment. Our experimental set up is illustrated in Figure 5
above.

If our hypothesis is true then we would expect average
performance levels for our SHRIMP model to be higher
than PS3. We quantified the operator performance level
(W) by taking weighted ratio between the number of
correct observations (C) and the task completion times
(T), calculating the following formula.

W =
C
T

(1)

The idea captured here is the notion that subjects com-
pleting the task with a higher number of correct post ob-
servational questions with a lower navigation task time
are considered to have higher performance levels. In
this case the performance factor is measured by two
well-known HRI metrics, situation awareness & task
completion time [Steinfeld et al., 2006].

Situation awareness is evaluated by the human oper-
ator’s capacity to pay attention to the environmental
scene while controlling the robot. According to
[Parasuraman et al., 2000], the amount of situation
awareness positively correlates with the users’ interac-
tion performance. We assessed the amount of situation
awareness by using the number of successful recalls,
which are captured through the post observational
questionnaire. The questionnaire included five multiple
choice questions, each providing a series of markers.
Out of those markers, the user had to recall and select
the correct marker that was present in the environment.
Consequently, a higher amount of successful recalls
lead to higher values for W, which in turn indicate
higher levels of interaction performance. The raw data
including correct observations, task completion times
and W values are summarized in Table 23.

6 RESULTS
Based on the data of Table 2 we plot the histogram
between the number of participants and the W values
(i.e. performance indicator) in order to investigate per-
formance patterns posed by the both types of inter-
faces. Figure 6 illustrates the resulting histogram for
our SHRIMP framework. The peak of its normal distri-
bution indicates an average value (W S) of 0.80721632.
Similarly Figure 7 depicts the histogram with its normal

3 In Table 2 data points in W column with 0 values highlight
the cases where users could not sucessfully recall elements in
the environment. These are extreme cases and further experi-
mentation will be done with those cases removed.
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distribution for PS3 gamepad whereas its peak point
marks an average value (W P) of 0.500894682.

According to the graphs in Figure 6 and Figure 7 it is
evident that,

W S >W P (2)

In order to better highlight this difference we rescale
both W S and W P in the following manner while bring-
ing them into a common range.

W S
rescaled =

W S

W S +W P (3)

W P
rescaled =

W P

W S +W P (4)



Subject
ID

Correct ob-
servations
with PS3 (%)

Correct obser-
vations with
SHRIMP (%)

Time-PS3 (s) Time-
SHRIMP
(s)

W-PS3 W-SHRIMP

1 40 100 44.8 69.01 0.89 1.45
2 80 100 175.91 122.41 0.45 0.82
3 100 40 165.56 167.18 0.60 0.0014
4 80 60 48.36 43.36 1.65 1.38
5 0 60 83.7 74.92 0 0.80
6 0 100 65.33 98.05 0 1.02
7 40 20 119.67 76.08 0.33 0.26
8 20 0 138.78 62.72 0.14 0
9 0 40 86.58 70.81 0 0.56
10 40 100 159.72 79.09 0.25 1.26
11 0 40 64.96 58.66 0 0.68
12 40 100 57.8 61.42 0.69 1.63
13 0 20 61.45 64.78 0 0.31
14 40 40 42.69 68.08 0.94 0.59
15 40 60 60.78 59.51 0.66 1.01
16 0 40 46.13 64.92 0 0.62
17 60 100 72.15 63.47 0.83 1.58
18 40 40 148.96 92.6 0.27 0.43
19 80 40 39.53 77.45 2.02 0.52
20 20 100 73.54 81.62 0.27 1.22

Table 2: The raw dataset obtained for each participant.

W S
rescaled and W P

rescaled are the rescaled values of W S and
W P respectively.

The pie chart in Figure 8 summarizes the results of
W S

rescaled (performance level of SHRIMP) and W P
rescaled

(performance level of PS3). The results indicate that av-
erage performance-levels with PS3 (38%) are approxi-
mately halved compared to the SHRIMP (62%). The
raw results are statistically significant against a paired
t-test with a p-value of 0.05. The significance of these
results suggests that the average performance level oc-
curred by PS3 gamepad is lower than the average HRI
performance level of SHRIMP.

Further analysis of the normal distributions in W-
values highlights the significance of performance
differences between our SHRIMP framework and the
PS3 gamepad. As illustrated in Figure 9 SHRIMP’s
standard deviation in W-values (0.497810641) is
comparatively lower than the standard deviation of
W-values in PS3 (0.562250748). This results in having
a leaner normal distribution for SHRIMP in contrast
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Figure 8: Performance-levels of PS3 & SHRIMP

0.
0

0.
2

0.
4

0.
6

0.
8

W Value

D
en

si
ty

−1.1 −0.8 −0.5 −0.2 0.1 0.4 0.7 1 1.2 1.5 1.8 2 2.2 2.5

SHRIMP
PS3

Figure 9: Normal distribution of W-values in SHRIMP
& PS3

to the distribution of PS3. These results enable us to
conclude that our hypothesis is valid and the AR based
HRI is more intuitive and performance-wise higher
than traditional directly controlled HRI methods.

7 FUTURE WORK
Future work will focus on displaying AR markers
within a re-constructed model of the environment. This
could be achieved by the integration of our model with
some existing 3D re-construction system and will also
enable the robot to be tracked (in a 3D map), enhancing
the visual feed-back to the user.



8 CONCLUSION
Future applications of robotics will involve people with
little or no practical experience in controlling robots.
We aim to improve the level of HRI experience for
such people by introducing a new form of HRI mid-
dleware, namely SHRIMP. The proposed HRI middle-
ware (i.e. SHRIMP) can work as a generic frame-
work across different robot platforms and with different
HRI tasks. In this paper we showed two distinct HRI
tasks, a navigation task and a gripping task, carried out
through SHRIMP. We further discussed our investiga-
tions with SHRIMP on measuring the HRI performance
in contrast to a PS3 gamepad. Based on our results,
we saw that AR-based SHRIMP implementation is less
stressful when compared to directly controlled meth-
ods. Further experimentation should be performed with
an increased sample size to make the statistical analy-
sis more robust. Finally the study leaves us with the
following question. Will augmented reality be the HRI
middleware of the future?
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